

What Is Ecology?

Ecology is the scientific study of interaction among organisms and their environment—both living (biotic) and non-living (abiotic) components.

Mr Vinoth

HISTORICAL VIEW

<u>Ernst Haeckel (1866)</u> coined the term ecology (Greek oikos = house; logos = study).

Ecology: The Study

A scientific discipline focused on understanding the complex <u>interactions</u> between living organisms and their surroundings.

A frog lives in a pond

It eats insects

It needs water, sunlight, and air

It is also food for snakes

So, ecology studies this whole "who lives where, who eats what, and how they all depend on each other.

Environment: The Context

The sum of all external conditions (living and non-living) that influence an organism or a community.

A fish in a pond .

Its environment = water (non-living) + plants, insects, other fish (living) + sunlight, air, temperature (non-living).

So, the environment is just everything around the fish that affects its life.

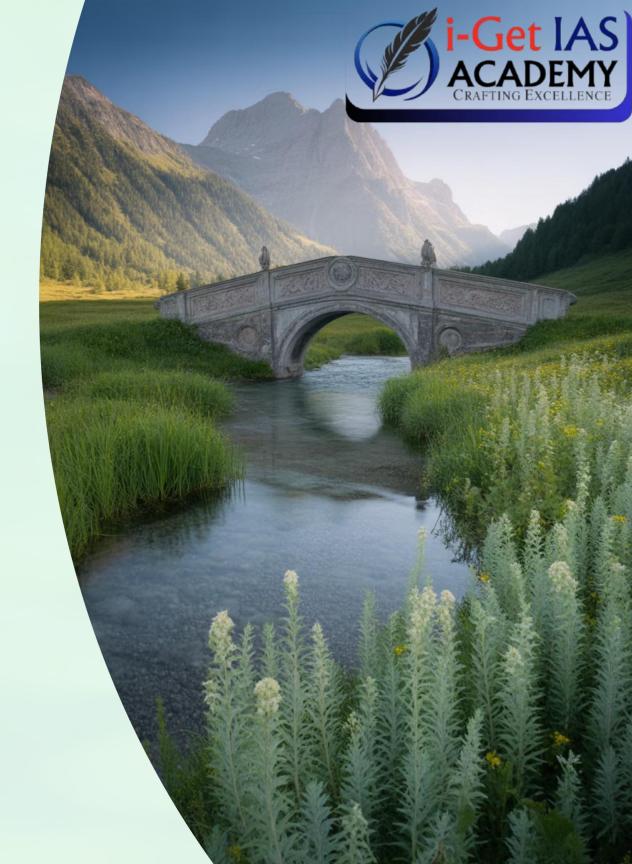
Broad Classificationof Environment

Two major components:

Biotic (Living) Components

Abiotic (Non-living) Components

Abiotic Components


These are non-living *physical and chemical* elements of the environment.

Sunlight (gives light and heat)

Water (rain, river, sea)

Air (oxygen we breathe)

Soil (where plants grow)

Abiotic Factors

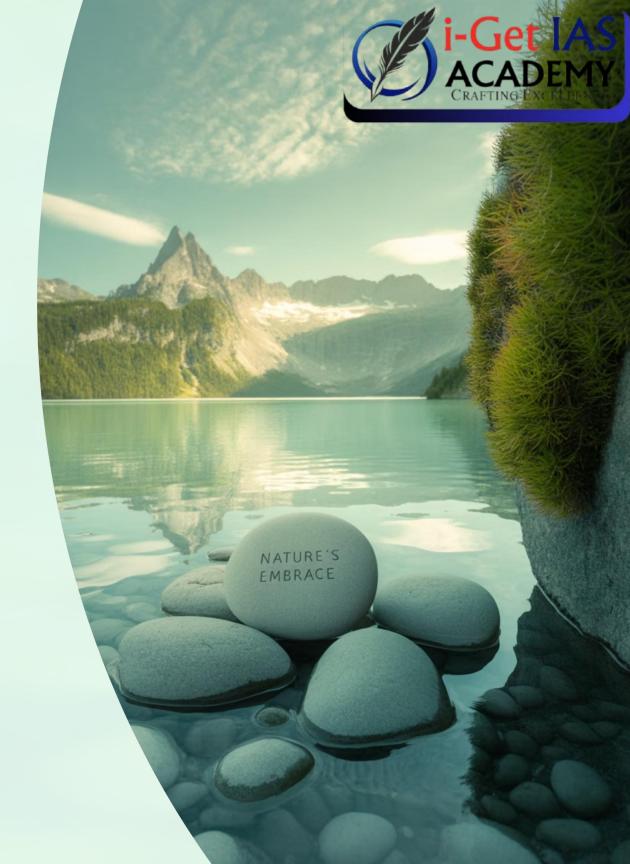
Atmosphere

Gaseous layer around the Earth, supplies oxygen, CO₂, nitrogen, and regulates temperature

Example: Air, wind

currents

Hydrosphere


All water bodies —
supports aquatic life and
regulates climate

Example: Oceans, rivers, groundwater

Lithosphere

The Earth's crust and upper mantle — provides minerals, nutrients, and land for life

Example: Rocks, soil, mountains

Abiotic Factors

Climate

Long-term patterns of temperature, humidity, and precipitation

Example: Tropical, arid,

polar zones

Solar Radiation

Energy from the Sun — drives photosynthesis and climate

Example: Daylight, UV

radiation

Chemical Factors

Inorganic & organic chemicals that influence ecosystems

Example: pH of soil/water, nutrient levels, salinity

Biotic Components (Living)

These are all living organisms that directly or indirectly interact with *each other and* with abiotic factors.

Three Main Groups of Biotic Components

Biotic components can be categorised into three main groups based on their role in energy flow within an ecosystem:

Producers (Autotrophs)

Consumers (Heterotrophs)

Decomposers & Detritivores

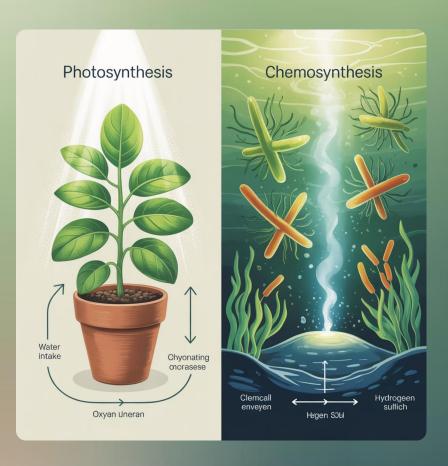
Producers (Autotrophs)

Manufacture their own food using solar energy or *chemical energy*.

- Basis of all food chains.
- Examples: Green plants, algae, phytoplankton, chemosynthetic bacteria.

Using Solar Energy (Photosynthesis)

Green plants make their own food from sunlight, water, and carbon dioxide.


Using Chemical Energy (Chemosynthesis)

Bacteria near deep-sea vents use chemicals like hydrogen sulfide from hot water to make their food (no sunlight there).

Plants = solar chefs

Deep-sea bacteria = chemical chefs

Consumers (Heterotrophs)

Depend on other organisms for food.

Primary consumers

Herbivores (deer, grasshoppers, zooplankton)

Secondary consumers

Carnivores that eat herbivores (frogs, small fish)

Tertiary consumers

Carnivores that eat other carnivores (eagles, sharks)

Omnivores

Eat both plants and animals (humans, bears)

Decomposers & Detritivores

Break down dead organisms and waste into nutrients that return to the soil and water

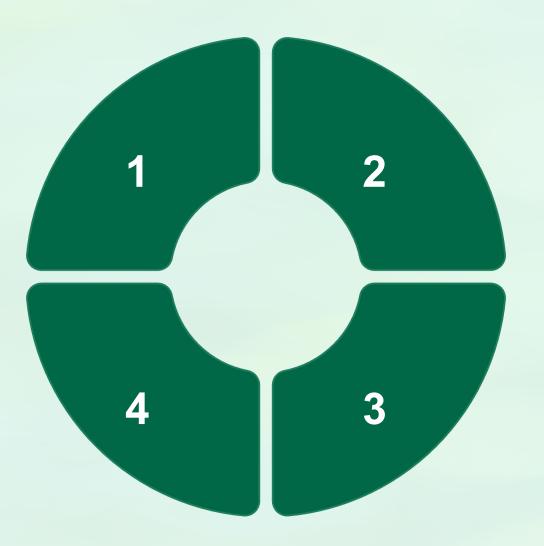
Detritivores: Earthworms, some

insects, crabs.

Decomposers: Fungi, bacteria.

Detritivores = Eaters of waste bits

They eat dead plants and animals (detritus) directly — not like bacteria that break it down chemically.


Earthworms eat dead leaves and soil.
 Lice eat rotting wood.
 Crabs eat dead animals and plants in water.

Decomposers: Cleaners of nature

A fallen leaf lies on the ground.

Then plants use those nutrients again.

Fungi (like mushrooms and bacteria attack it.

Slowly the leaf rots and becomes nutrients in the soil.

So:

Decomposers (fungi, bacteria) = break waste down *chemically*

Detritivores (worms, crabs, etc.) = *chew* and eat dead stuff directly

Interaction Between Components - Ecology

Abjotic - Biotic Interaction

Sunlight (abiotic) allows plants (biotic) to photosynthesize; plants provide food for herbivores; herbivores are prey for carnivores.

Biotic - Biotic Interaction

Predation, competition, mutualism, etc.

Abiotic - Abiotic Interaction

Climate affects soil moisture; ocean currents affect temperature distribution.

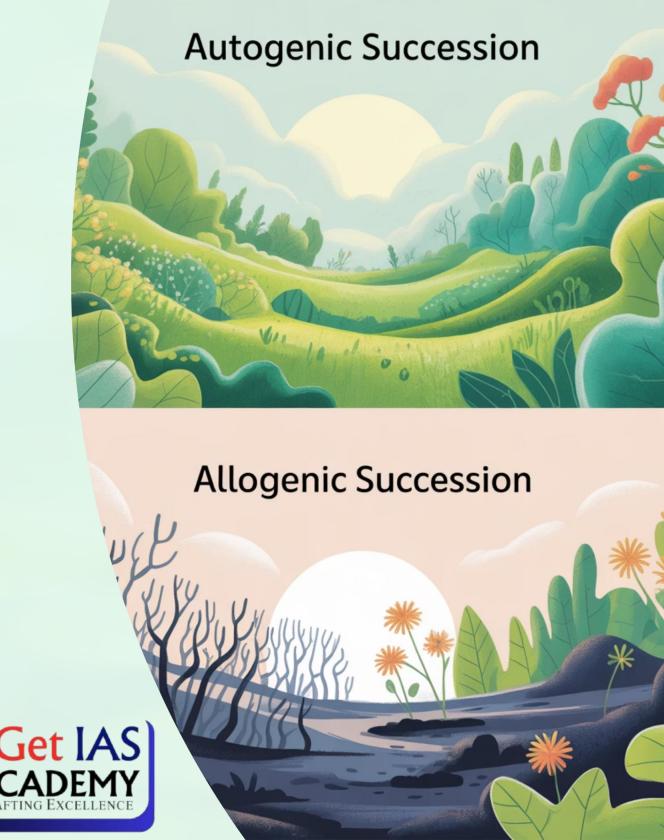
Ecological Succession

The process of change in species structure of an ecological community over time.

Bare rock → first lichens & moss grow.

4

Then grasses appear.

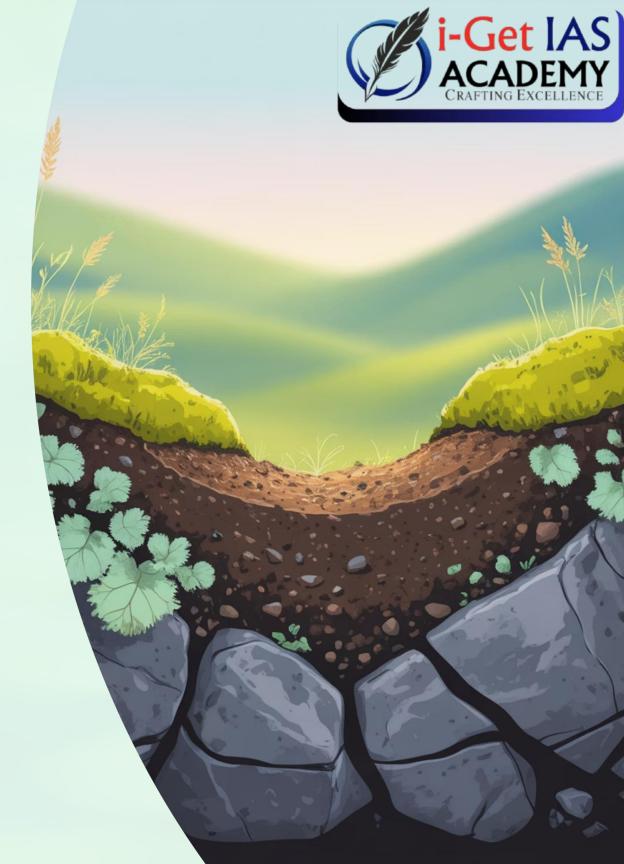

Finally, a forest forms.

Later shrubs and trees grow.

Types of Ecological Succession

Autogenic Succession

Allogenic Succession



Driven by the biotic (living) components of the ecosystem

Especially the organisms of the community itself

Lichens secrete acids that break down rocks
 ⇒ soil formation → mosses & grasses invade

The existing species modify the environment

Soil, microclimate, nutrients, shade, humidity

Making it favourable for new species to replace them.

Large trees creating shade → shadetolerant species replace sun-loving species.

Allogenic Succession

Succession driven by external (abiotic) environmental factors rather than the community itself.

Flooding converts a forest into a wetland.

Changes in soil, climate, water availability, or natural disasters alter the habitat and initiate succession

 Volcanic eruption covering a forest with lava → primary succession begins.

Driving Force	Caused by living organisms of the community	Caused by external abiotic factors
Example	Lichens forming soil, tree shading	Flood, fire, volcanic eruption
Speed	Usually gradual	Can be sudden or rapid
Control	Internal (community-driven)	External (environment-driven)

PYQ - Environment & Ecology

In the grasslands, trees do not replace the grasses as a part of an ecological succession because of (2013)

- A) insects and fungi
- B) limited sunlight and paucity of nutrients
- C) water limits and fire
- D) None of the above

2. Lichens, which are capable of initiating ecological succession even on a bare rock, are actually a symbiotic association of (2014)

A) algae and bacteria

B) algae and fungi

C) bacteria, and fungi

D) fungi and mosses

3. Which one of the following is the best description of the term 'ecosystem'? (2015)

- A) A community of organisms interacting with one another
- B) That part of the Earth which is inhabited by living organisms
- C) A community of organisms together with the environment in which they live
- D) The flora and fauna of a geographical area

4. Consider the following kinds of organisms:

- 1. Copepods
- 2. Cyanobacteria
- 3. Diatoms
- 4. Foraminifera

Which of the above are primary producers in the food chains of oceans?(2021)

A) 1 and 2 only

B) 2 and 3 only

C) 3 and 4 only

D) 1 and 4 only

5. Which of the following are detritivores? (2021)

- 1. Earthworms
- 2. Jellyfish
- 3. Millipedes
- 4. Seahorses
- 5. Woodlice

Select the correct answer using the code given below.

A) 1, 2 and 4 only

B) 2, 3, 4 and 5 only

C) 1, 3 and 5 only

D) 1, 2, 3, 4 and 5

